Small-conductance Ca2+-activated K+ channels modulate action potential-induced Ca2+ transients in hippocampal neurons.
نویسندگان
چکیده
In hippocampal pyramidal neurons, voltage-gated Ca(2+) channels open in response to action potentials. This results in elevations in the intracellular concentration of Ca(2+) that are maximal in the proximal apical dendrites and decrease rapidly with distance from the soma. The control of these action potential-evoked Ca(2+) elevations is critical for the regulation of hippocampal neuronal activity. As part of Ca(2+) signaling microdomains, small-conductance Ca(2+)-activated K(+) (SK) channels have been shown to modulate the amplitude and duration of intracellular Ca(2+) signals by feedback regulation of synaptically activated Ca(2+) sources in small distal dendrites and dendritic spines, thus affecting synaptic plasticity in the hippocampus. In this study, we investigated the effect of the activation of SK channels on Ca(2+) transients specifically induced by action potentials in the proximal processes of hippocampal pyramidal neurons. Our results, obtained by using selective SK channel blockers and enhancers, show that SK channels act in a feedback loop, in which their activation by Ca(2+) entering mainly through L-type voltage-gated Ca(2+) channels leads to a reduction in the subsequent dendritic influx of Ca(2+). This underscores a new role of SK channels in the proximal apical dendrite of hippocampal pyramidal neurons.
منابع مشابه
Small-conductance Ca -activated K channels modulate action potential-induced Ca transients in hippocampal neurons
Tonini R, Ferraro T, Sampedro-Castañeda M, Cavaccini A, Stocker M, Richards CD, Pedarzani P. Small-conductance Ca activated K channels modulate action potential-induced Ca transients in hippocampal neurons. J Neurophysiol 109: 1514–1524, 2013. First published December 19, 2012; doi:10.1152/jn.00346.2012.—In hippocampal pyramidal neurons, voltage-gated Ca channels open in response to action pote...
متن کاملCalcium activates two types of potassium channels in rat hippocampal neurons in culture.
Several calcium-dependent potassium currents can contribute to the electrophysiological properties of neurons. In hippocampal pyramidal cells, 2 afterhyperpolarizations (AHPs) are mediated by different calcium-activated potassium currents. First, a rapidly activated current contributes to action-potential repolarization and the fast AHP following individual action potentials. In addition, a slo...
متن کاملNanodomains of single Ca2+ channels contribute to action potential repolarization in cortical neurons.
The precise shape of action potentials in cortical neurons is a key determinant of action potential-dependent Ca2+ influx, as well as of neuronal signaling, on a millisecond scale. In cortical neurons, Ca2+-sensitive K+ channels, or BK channels (BKChs), are crucial for action potential termination, but the precise functional interplay between Ca2+ channels and BKChs has remained unclear. In thi...
متن کاملSmall-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity.
Apamin-sensitive, small-conductance, Ca2+-activated K+ channels (SK channels) modulate neuronal excitability in CA1 neurons. Blocking all SK channel subtypes with apamin facilitates the induction of hippocampal synaptic plasticity and enhances hippocampal learning. In CA1 dendrites, SK channels are activated by Ca2+ through NMDA receptors and restrict glutamate-mediated EPSPs. Studies of SK cha...
متن کاملCalcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.
Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 109 6 شماره
صفحات -
تاریخ انتشار 2013